Investigation of Intercellular Adhesion Molecule-1 Targeted Drug Transport across the Gastrointestinal Epithelium

نویسندگان

  • Rasa Ghaffarian
  • Silvia Muro
چکیده

Title of Dissertation: INVESTIGATION OF INTERCELLULAR ADHESION MOLECULE-1 TARGETED DRUG TRANSPORT ACROSS THE GASTROINTESTINAL EPITHELIUM Rasa Ghaffarian, Doctor of Philosophy, 2015 Dissertation directed by: Associate Professor, Silvia Muro Fischell Department of Bioengineering & Institute for Bioscience and Biotechnology Research Contrary to systemic injection of therapeutics, oral formulations represent clear advantages to patients, healthcare systems, and pharmaceutical companies including safety, low cost and patient compliance. However, oral delivery remains a major obstacle due to (1) drug instability in the harsh environment of the gastrointestinal (GI) tract owing to low gastric pH and enzymatic hydrolysis; (2) low permeability through the mucus layer and subsequent adhesion to the GI epithelium; and (3) suboptimal transport into or across the GI epitheliumthe cell barrier responsible for selective absorption of substances into the circulation, for local or systemic delivery. While encapsulation methods have been developed to overcome barriers to stability and adhesion to the GI epithelium, safe and effective transport into and across this lining has not yet been achieved for several drugs, especially biotherapeutics. Hence, our goal is to overcome these challenges for delivery of therapeutics (including biotherapeutics) via the oral route. For this purpose, we targeted drugs to intercellular adhesion molecule-1 (ICAM-1), a protein expressed on the GI epithelium and other cell types. We previously demonstrated, that polymer nanocarriers (NCs) coated with antibodies to bind multiple copies of ICAM-1 (multimeric targeting) triggered uptake and transport across cultured GI epithelial cells, enabling intracellular and transcellular drug delivery. To implement this strategy in vivo, we successfully encapsulated antibody-coated NCs in chitosan-alginate microspheres for gastric protection of labile targeting antibodies, site-specific release in the intestinal environment (the site of drug absorption) and retention of targeting ability following release in vitro, in cell culture, and in vivo. Furthermore, to expand the utility of the ICAM-1 targeting approach, we explored a novel drug delivery system that binds only one to two molecules of ICAM-1 (monomeric targeting), which provides distinct advantages for oral drug delivery compared with multimeric strategies. In order to elucidate the advantages offered by this monomeric targeting approach, we compared the uptake and intracellular trafficking of ICAM-1 targeted monomeric antibodies vs. multimeric antibody-coated NCs in cultured endothelial cells, a commonly used cellular model to study ICAM-1 transport. We then revealed that the distinct itinerary of transport offered by monomeric ICAM-1 targeted antibodies led to enhanced uptake and transport across cultured GI epithelial cells, showing promise for oral delivery. Finally, in order to exploit this transport pathway for oral drug delivery, we conjugated a model drug cargo to monomeric ICAM-1 targeted antibodies, which was shown to endow drug targeting and delivery into and across cultured GI epithelial cells, while preserving the functional activity of the drug cargo. These findings demonstrate that monomeric vehicles serve as a viable alternative to multimeric strategies, expanding the range of oral delivery applications afforded by ICAM-1 targeting. Taken together, the work performed in this dissertation advocates the potential of ICAM1 targeting strategies for improving oral absorption of therapeutics, and provides a foundation for studying these strategies in vivo. INVESTIGATION OF INTERCELLULAR ADHESION MOLECULE-1 TARGETED DRUG TRANSPORT ACROSS THE GASTROINTESTINAL EPITHELIUM

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice

Drug delivery to the gastrointestinal (GI) tract is key for improving treatment of GI maladies, developing oral vaccines, and facilitating drug transport into circulation. However, delivery of formulations to the GI tract is hindered by pH changes, degradative enzymes, mucus, and peristalsis, leading to poor GI retention. Targeting may prolong residence of therapeutics in the GI tract and enhan...

متن کامل

A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice.

Intercellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein expressed on activated endothelium and many other cells, represents a suitable target for delivery of drug nanocarriers (NCs) to disease areas. Numerous works have shown efficient targeting and intracellular transport of ICAM-1-targeted NCs, rendering significant therapeutic potential. This is the case for enzyme delivery ...

متن کامل

SYNTHESIS AND CHARACTERIZATION OF SURFACTANT-FREE, FLUORESCENT POLY(LACTIC-CO-GLYCOLIC) ACID NANOPARTICLES TARGETED TO INTERCELLULAR ADHESION MOLECULE -1 By

Targeted drug delivery to endothelial cells lining the vasculature can improve treatment of many pathologies. Intercellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein overexpressed in many diseases, is a good determinant for endothelial targeting of drug nanoparticles (NPs). In this study we synthesized surfactant-free, FITC-labeled poly(lactic-co-glycolic) acid (PLGA) NPs coate...

متن کامل

Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies

Targeted drug delivery to sites of inflammation will provide effective, precise, and safe therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side effects and/or increasing drug action. Disease-site targeting is believed to play a major role in the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles. This article will focu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015